

Pan-Arctic Digital Elevation Map

Tracy Fuller

Alaska Mapping Program Manager

U.S. Geological Survey, National Geospatial Program

arctic-sdi.org

Digital Surface Model (DSM) and Digital Terrain Model (DTM)

- DSM shows 'tops of trees and structures', DTM removes cover to show 'bare earth'
- Both are important for modeling and mapping applications

Digital Elevation Model Primer

- Elevation Uses
 - Primary layer for many Arctic applications
 - Examples: Wildfire modeling, biomass calculation, storm surge and tsunami risk, coastal change monitoring, climate modeling, general map generation

U.S. Arctic Council Chairmanship Program 2015-2017 Addressing the Impacts of Climate Change

Improving Arctic Climate Science: Arctic Digital Elevation Map

Original Proposal

- Improve access to high resolution Arctic elevation data
- Public available data
- Single point of access
- Arctic Nations, through Arctic SDI, harmonize existing Arctic data into a Pan-Arctic DEM
- Series of workshops and intermediary steps would:
 - research appropriate technical specs, including geographic coverage and resolution
 - plan for implementation
 - harmonize data
 - assess quality
 - coordinate data delivery

arctic-sdi.org

Announcements and Activities Since Proposal Acceptance

- Arctic SDI Board approves Arctic nations' mapping representatives to
 - support initial requirements gathering and data inventory efforts
 - support initial workshop scheduled in conjunction with the Second Polar Data Forum (PDF II) scheduled October 26-29, 2015 in Waterloo, Canada
- U.S. President announces the Polar Geospatial Center's Pan-Arctic DEM collaboration project
 - funded by the U.S. National Science Foundation
 - backed by satellite imagery licensed by the U.S. National Geospatial Intelligence Agency (NGA)
 - Imagery licensed, but derivative DSM is Public Doman
- NASA preparing to release a world-wide DSM generated from ASTER satellite imagery
 - October 2015 release
 - 20m resolution (coarser than the proposed 2m-8m resolution PGC data)

SDI Data Infrastructure Results from Information Gathering Efforts

Data Inventory

- Gathering detailed information on Arctic Nation existing elevation data
- Many (but not all) nations have public domain DTM and DSM data nationwide
- Varying resolutions from 5m to 90m
- Some countries working to complete new acquisitions

Requirements Gathering

- Current Pan-Arctic dataset generally in use is 1km resolution
- Wide range of resolutions requested 10m, 100m, 200m, 500m
- Requests for Pan-Arctic DEM solution to be well thought out, in consultation with the science community

SDI Artic Spatial Center Arctic DEM Project Highlights

PGC DEM Basic Characteristics

- 2m-8m point DSM (resolution depends on funding for supercomputer cycles)
- Some 'artifacts' with fully automated process can be visually distractive to professional cartographers correctable with new imagery and editing

ARCTIC Arctic Spatial Data Infrastructure Polar Geospatial Center Arctic DEM Project Highlights

Fully Automated System

- No human intervention by PGC to cartographically enhance the data (seeking assistance)
- Unprecedented capacity for REPEAT coverage image request/image delivery/DEM processing all automated, satellite overflight every 2 days (although competition for imagery and clouds can reduce acquisition opportunities)

Cost: Estimated \$3M-\$5M U.S., full funding anticipated by U.S. NSF

Timeline

Working Greenland and Iceland now; Alaska by spring 2016; full Pan-Arctic by spring 2017

Data Delivery Options

 U.S. NGA, ESRI, Inc., Google, and Open Geospatial Consortium are in talks, and some representatives from these organizations plan on attending upcoming Waterloo workshop

Arctic Nation, Permanent Participation and Observer Collaboration Opportunities

- Review satellite image stereo pair browse images to find improved imagery scenes
- Provide high resolution coastline data to improve masking of coastal imagery
- Provide Ground Control Points and lidar where available to PGC to improve the process
- Provide data assessment and editing capability

Workshops Critical to Review Options and Plan Implementation

1st Workshop October 26-27 in Waterloo Canada; 2nd Workshop proposed spring 2016 (at PGC?)

Requirements Analysis

- Review initial requirements feedback; finalize questions for upcoming international survey
- Great opportunity to network with and gather requirements from PDF II participants

Data Inventory

- Review and finalize inventory of existing Arctic DEM data
- Consider viability and specifications for a near-term data harmonization project

In-depth Review of Polar Geospatial Center Project Methodology and Deliverable

- PGC will prepare samples of data over Arctic nations' suggested AOIs
- Participants will review samples, consider collaboration opportunities with PGC
 Data Delivery

Review options for serving data (internet download, web coverage service)
Pan-Arctic DEM Hackathon

• Participating technical practitioners will test data harmonization and delivery options

2 Possible Scenarios to Consider for Pan-Arctic DEM

Support very near term development of a harmonized Pan-Arctic dataset

- Harmonize existing best-available Arctic nation data
- Support resolution(s) (100m, 500m) required by global climate science modeling community
- Arctic SDI consider appropriate delivery mechanism
- Replace current 1-km data used by many modelers with improved resolution and data vintage
- Cost quote to standardize to single resolution product is \$90,000 U.S. (or in-kind labor)

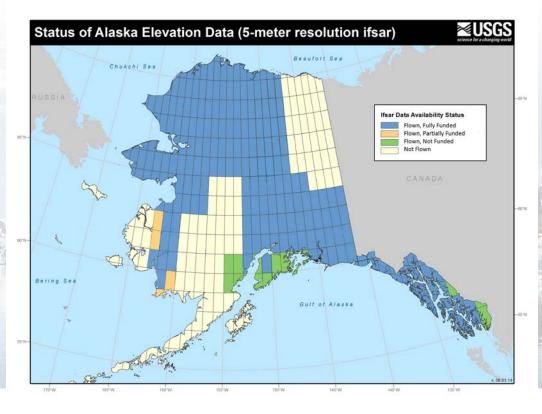
Support 18-month PGC effort to generate 2m-8m Pan-Arctic DEM coverage

- Consider opportunities to support PGC: assess imagery to fill gaps, assess delivered data, provide improved coastline data
- U.S. Alaska example: U.S. NGA to perform hands-on cartographic enhancements to directly improve the data

U.S. Alaska Example of 2-Path DEM Approach

U.S. 5m radar DEM project for Alaska

- U.S. Geological Survey, State of Alaska, and other federal agencies funding
- Anticipate 3-4 years to complete radar collection of both DSM and DTM 5m elevation products for all of Alaska except for the Aleutians
- Total project cost of \$60M US, with \$23M remaining, \$7.5M avg. annual
- Critical for accurate 'bare-earth' topographic and cartographic applications Baseline DEM


U.S. NGA to support PGC effort by improving auto-generated data

- PGC data fills gaps until radar data collection is complete over main body of Alaska
- PGC DEMs provide strong option for areas that are difficult to access, i.e. Aleutians
- PGC provides rapid and costly repeat coverage where needed
- NGA to filter data, find an fill gaps, flatten water, hydro-enforce with breaklines, and where available use additional ground control points and lidar data to improve accuracy

U.S. Alaska Example of 2-Path DEM Approach

- 60% airborne radar elevation acquisition complete
- Use PGC data for Aleutians
- USGS will assess PGC data over Alaska when delivered
- Plan to complete remaining mainland Alaska with 5m ifsar data

Potential Roles for CAFF and Arctic SDI to Consider

CAFF

- Provide contacts to improve requirements gathering effort
- Consider sponsoring workshops
- Consider providing CAFF server space for data storage, depending on Arctic SDI suggestions and outcomes from the Waterloo workshop

Arctic SDI

- Sponsor workshops and provide science contacts
- Support completion of requirements gathering and data inventory efforts
- Attend workshops and providing data and technical expertise
- Provide storage and data delivery for a potential near-term harmonized data product
- Support PGC effort so final product in 18 months is improved beyond the fully automated version