Arctic Spatial Data Infrastructure

Alaska Surveying & Mapping Conference
Anchorage, Alaska
February 17, 2016
A high level Introduction

Technical Deep Dive

Stakeholder Engagement & OGC Interoperability Opportunities

Arctic SDI activities we won’t cover today:
 • Need for Guidelines, Standards, Policies, Cookbooks, etc.

Q&A
Arctic SDI is based on voluntary commitments by the National Mapping Agencies from 8 countries that border the Arctic Circle.

There is a signed MoU towards cooperative development of an Arctic SDI.

- Earth Sciences Sector of the Department of Natural Resources Canada
- Danish Agency for Data Supply and Efficiency
- National Land Survey of Finland
- National Land Survey of Iceland
- Norwegian Mapping Authority
- Federal Service for State Registration, Cadastre and Mapping of the Russian Federation
- Swedish Mapping, Cadastral and Land Registration Authority
- U.S. Geological Survey
A Spatial Data Infrastructure

Allows sharing geospatial data in an efficient and flexible way

The Arctic SDI

...and its development is facilitated by the National Mapping Agencies of the eight Arctic Countries.

Important data sets are produced and distributed by many stakeholders...

...most of it can be geographically referenced
What are the benefits of participation in Arctic SDI?

Remember that time that you *really* wanted to find that dataset, or map, you had seen before?

Remember how much time you were looking and you were (or weren’t) successful?

- Geospatial data and the maps you could generate (on the fly) will always be accessible!
 - Data can be used, and re-used in ways we can now only dream of!
 - As common data layers evolve consistent visualization becomes possible
 - ... *Promotes collaboration with access to any data provider: public & private sector data, NGOs and Academia*
What’s the difference between an SDI and a Geoportal?

Spatial Data Infrastructures are like transportation infrastructures …
Roads, for example

• Data is like the vehicles …
 • Cars vs. Trucks; All-Wheel Drive vs. 4-Wheel Drive; Sedan vs. All-Terrain Vehicle
• Effective delivery of different data types require different standards, or protocols
 • Time Series/Temporal data vs. Raster data vs. Vector data, etc.

Geoportals are tools which can access data in the infrastructure

Standards based vehicles can be driven on any standard road!
Arctic SDI: A Brief History

1990’s:
Cross-Border Arctic
GIT Barents launched

2007:
Exploring possibilities for an Arctic SDI ...

2008-2009:
Arctic SDI proposal to AC from Nordic NMA Director Generals
Arctic Council SAOs endorsed the Arctic SDI initiative of the NMAs

2010-2011:
Arctic SDI Concept approved by NMA representatives
Constitutional meeting – Project plan approved
Kick off TWG

2012-2013:
Agreement on Standards and Projections
Development of Arctic SDI view services
Arctic SDI Topo-graphic Base Map

2014:
Geoportal Launched
MOU between the NMAs in the Arctic to support and develop an SDI for access & distribution of geospatial data

2015:
Governance & 5-year Strategic Plan Approved by the Board

Monitoring, management, emergency preparedness and decision making responses to impacts of climate change and human activities require accessible and reliable data
Arctic SDI Strategic Plan 2015-2020: 6 Objectives
Main Content of the Arctic SDI

The Arctic SDI is an infrastructure that provides a web portal with easy access to:

- A geoportal for geospatial data viewing and discovery
- A searchable metadata catalogue
- Authoritative reference data as a Web Map Service (WMS) 1:250,000
- Thematic data (birds, icecover, ship routes, land cover change, flora etc.)

www.arctic-sdi.org
Arctic SDI Service Infrastructure

National Data and Service Layer
- NATIONAL DATA
- Application Layer: Apply common portrayal (SLD) Rules created by project group

ASDI Service Integration Layer
- NATIONAL DATA
- CUSTOMISED VMAP0 DATA FOR SMALL SCALES
- CASCaded WMS NATIONAL DATA LARGER SCALES

Application Layer
- WMTS
Arctic SDI Cloud Infrastructure

ASDI Cloud Infrastructure – NMA Governmental cloud

National Data and Service Layer

Application layer
Arctic SDI Topographical Basemap Tile Cache

Service type: OGC WMTS (Web Map Tile Service)

Cache input sources: OGC Web Map Service 2.0. Single services for small scale and hillshade. Cascaded WMS from National services.

Geographic extent: Geographic Arctic

Scale range: 1:136,421,172 – 1:1,041

Viewing pyramid/zoom levels: 18 zoom levels; Vmap(0) 1:136,421,172 - 1:532,895 ; National Data 1:266,448 – 1:1,041

Map Projection: EPSG:3575 - WGS 84 / North Pole LAEA Europe
<table>
<thead>
<tr>
<th>Map type</th>
<th>Arctic Reference Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim of map use</td>
<td>A reference background map to enable professional users to display their data in client applications such as websites, GIS and increasingly mobile devices and background data for other types of applications</td>
</tr>
<tr>
<td>Map content</td>
<td>General description of the man-made and natural landscape with specific interest for transport infrastructure, administrative boundaries, hydrography, location of settlements, relief and land cover information</td>
</tr>
<tr>
<td>User</td>
<td>Professionals and general public</td>
</tr>
<tr>
<td>Map function</td>
<td>Discovery, information, cognition, communication, and social function</td>
</tr>
<tr>
<td>Map use situation</td>
<td>Indoor (desktop) / (outdoor (mobile))</td>
</tr>
<tr>
<td>Area of interest</td>
<td>Geographic Arctic</td>
</tr>
<tr>
<td>Scale</td>
<td>Pyramid of digital maps at different zoom levels. Scalerange : 1:136.421.172 – 1:1.041</td>
</tr>
<tr>
<td>Output medium</td>
<td>Arctic Topographic BaseMap View Service (WMTS)</td>
</tr>
<tr>
<td>Source Data</td>
<td>Digital vector data from VMAP0 and national contributions from the 8 Arctic countries, Digital Terrain Model /Hillshade from GMTED2010</td>
</tr>
</tbody>
</table>
Oskari - Geoportals and Embedded maps

• For setting up Geoportals or Web GIS systems
• For creating Embedded map clients onto other websites very efficiently – like Google Maps on steroids
• For setting up advanced web-based tools, such as decisionmaking support services and data analysis tools
• Utilizes distributed SDIs via standard OGC interfaces, along with other data sources
• Multilingual – English, Swedish & Finnish full coverage, 15 other languages with partial coverage
• Open Source (MIT) - see oskari.org and Oskari GitHub for more info
Users of Oskari

- European Location Framework Showcase App
- Arctic SDI Geoportal
- Statistical data Geoportal "Liiteri" for the Finnish ministry of Environment
- The Regional Council of Southwest Finland Geoportal
- City of Tampere Geoportal, Citizens’ Services Map + many more
- Finnish National eGovernment services
- National Land Survey of Finland eServices

- Finnish Transport Agency data download service
- Permit Services for Municipalities (Lupapiste)
- Unemployment Services Finland mol.fi
- Helsinki Region Environmental Services Authority Geoportal
Browser-based Applications with Maps and Indicators

Proprietary interface

Standard interface

Standard interface

Standard interface

Oskari

Embedded Maps

RPC

SAAS

Statistical data

INSPIRE data

CAFF data

Raster

Metadata

GML
RPC – Remote Procedure Calls
Enable communication between the map and parent web page

Web Page

Hi, I’m a Map!

Well hi there Map! Can I ask you something?

Sure thing!

Can you tell me where is Vienna?

Vienna is right here, anything else?

How do I get from Felberstrasse 4 to the Airport?

Yep! First take the U3 to Volkstheater and then …

http://oskari.org/examples/rpc-api/rpc_example.html
Features

- OGC WMS, WMTS, WMS-T, WFS, CSW & ESRI REST support
- Embedded Maps with RPC API
- Integration to gazetteer / address / find nearest APIs
- Legend display with support for WMS styles
- Printout (WMS, WMTS, WFS)
- Integration with statistical data
- Spatial Analysis using GeoTools
- My Places and My Datasets
- Save my View
- Locate me -tool
- Marker and Link tools
- Measure distance and area
- Feature selection tool for WFS
- Change projection –tool
- Layer administration tool
- Layer Rights management tool
Location Search
Metadata Search
Map Layers & Coordinate Tool
Embedded Maps Wizard

Wizard

WYSIWYG
map iframe
Your Own Maps
Geoportal Administration
Time Series (WMS-T)
Spatial and Statistical Data combined
Spatial Analysis: Change calculation
Spatial Analysis: Spatial Join
Open Geospatial Consortium:
OGC Interoperability Pilot:
Arctic SDI Standards and Communication Pilot

The goal of the Arctic SDI OGC Pilot part of the is to demonstrate the diversity, richness and value of SDI Web services to Arctic SDI stakeholders.

• Sponsored and funded by USGS and NR Can,
• Supports the Arctic SDI 5-year Strategic Plan, Objective 4 Technical and Data Interoperability
• Outcomes will inform activities of Arctic SDI Working Groups
Arctic SDI OGC Interoperability Pilot
Open Geospatial Consortium - Arctic SDI Interoperability Pilot
Arctic SDI OGC Pilot: Organized in Two Phases

Phase One: Collects input and data across the entire Arctic, in order to develop:

• An inventory of available geospatial Web services across the Arctic with the intent to capture a wide range of thematic data layers.

• A plan that evaluates constraints & delineates core components that best define an Arctic SDI architecture.

• Development of a scenario to highlight value

• An RFQ and Request for participation
Arctic SDI OGC Pilot: Organized in Two Phases

Phase Two will:

• Be based on the output of Phase One
 • The detailed plan,
 • the proposed technical architecture to be implemented
 • the suggested scenarios and use cases will be scalable to the Arctic

• Allow for an iterative pilot connected with OGC Testbed-12 activity
 • The Testbed will be used to test interoperability of data services and tools from across the Arctic
The RFI on the OGC Arctic SDI Interoperability Pilot is due on the streets any day. It is open to all responses …

What opportunities exist to incorporate our data into the Inventory and Pilot?
Thank you for your attention!

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becci Anderson</td>
<td>rdanderson@usgs.gov</td>
</tr>
<tr>
<td>Jani Kylmäaho</td>
<td>jani.kylmaaho@nls.fi</td>
</tr>
<tr>
<td>Roy Hellesjø Mellum</td>
<td>roy.mellum@kartverket.no</td>
</tr>
<tr>
<td>Peter Pouplier</td>
<td>ppo@gst.dk</td>
</tr>
<tr>
<td>Fredrik Persäter</td>
<td>fredrik.persater@lm.se</td>
</tr>
<tr>
<td>Lorna Schmid</td>
<td>lorna@usgs.gov</td>
</tr>
</tbody>
</table>

Alaska Surveying and Mapping Conference
Anchorage, Alaska, USA
February 17, 2016
In Summary,

The 8 National Mapping Agencies have come together and signed a MoU to cooperate because

- Improved access to geospatial data can help us better to predict, understand and react to changes in the Arctic.
- Responses to the impact of climate change and human activities in the Arctic requires accessible and reliable data to facilitate monitoring, management, emergency preparedness and decision making.
- Important data sets are produced and distributed by many stakeholders – public and private sector – and most of it can be geographically referenced.

- Earth Sciences Sector of the Department of Natural Resources Canada
- Danish Agency of Data Supply and Efficiency
- National Land Survey of Finland
- National Land Survey of Iceland
- Norwegian Mapping Authority
- Federal Service for State Registration, Cadastre and Mapping of the Russian Federation
- Swedish Mapping, Cadastral and Land Registration Authority
- U.S. Geological Survey
Improved access to geospatial data can help us better predict, understand and react to changes in the Arctic.

Visit arctic-sdi.org