Tracy Fuller
Alaska Mapping Program Manager
U.S. Geological Survey, National Geospatial Program

Pan-Arctic Digital Elevation Map
Digital Elevation Model Primer

Digital Surface Model (DSM) and Digital Terrain Model (DTM)

- DSM shows ‘tops of trees and structures’, DTM removes cover to show ‘bare earth’
- Both are important for modeling and mapping applications
Digital Elevation Model Primer

- Elevation Uses
 - Primary layer for many Arctic applications
 - Examples: Wildfire modeling, biomass calculation, storm surge and tsunami risk, coastal change monitoring, climate modeling, general map generation
U.S. Arctic Council Chairmanship Program 2015-2017
Addressing the Impacts of Climate Change

Improving Arctic Climate Science: Arctic Digital Elevation Map

Original Proposal

- Improve access to high resolution Arctic elevation data
- Public available data
- Single point of access
- Arctic Nations, through Arctic SDI, harmonize existing Arctic data into a Pan-Arctic DEM

Series of workshops and intermediary steps would:

- research appropriate technical specs, including geographic coverage and resolution
- plan for implementation
- harmonize data
- assess quality
- coordinate data delivery
Announcements and Activities Since Proposal Acceptance

- Arctic SDI Board approves Arctic nations’ mapping representatives to
 - support initial requirements gathering and data inventory efforts
 - support initial workshop scheduled in conjunction with the Second Polar Data Forum (PDF II) scheduled October 26-29, 2015 in Waterloo, Canada
- U.S. President announces the Polar Geospatial Center’s Pan-Arctic DEM collaboration project
 - funded by the U.S. National Science Foundation
 - backed by satellite imagery licensed by the U.S. National Geospatial Intelligence Agency (NGA)
 - Imagery licensed, but derivative DSM is Public Domain
- NASA preparing to release a world-wide DSM generated from ASTER satellite imagery
 - October 2015 release
 - 20m resolution (coarser than the proposed 2m-8m resolution PGC data)
Results from Information Gathering Efforts

Data Inventory

• Gathering detailed information on Arctic Nation existing elevation data
• Many (but not all) nations have public domain DTM and DSM data nationwide
• Varying resolutions from 5m to 90m
• Some countries working to complete new acquisitions

Requirements Gathering

• Current Pan-Arctic dataset generally in use is 1km resolution
• Wide range of resolutions requested – 10m, 100m, 200m, 500m
• Requests for Pan-Arctic DEM solution to be well thought out, in consultation with the science community
PGC DEM Basic Characteristics

- 2m-8m point DSM (resolution depends on funding for supercomputer cycles)
- Some ‘artifacts’ with fully automated process - can be visually distractive to professional cartographers – correctable with new imagery and editing
Polar Geospatial Center Arctic DEM Project Highlights

Fully Automated System

• No human intervention by PGC to cartographically enhance the data (seeking assistance)
• Unprecedented capacity for REPEAT coverage – image request/image delivery/DEM processing all automated, satellite overflight every 2 days (although competition for imagery and clouds can reduce acquisition opportunities)

Cost: Estimated $3M-$5M U.S., full funding anticipated by U.S. NSF

Timeline

• Working Greenland and Iceland now; Alaska by spring 2016; full Pan-Arctic by spring 2017

Data Delivery Options

• U.S. NGA, ESRI, Inc., Google, and Open Geospatial Consortium are in talks, and some representatives from these organizations plan on attending upcoming Waterloo workshop

Arctic Nation, Permanent Participation and Observer Collaboration Opportunities

• Review satellite image stereo pair browse images to find improved imagery scenes
• Provide high resolution coastline data to improve masking of coastal imagery
• Provide Ground Control Points and lidar where available to PGC to improve the process
• Provide data assessment and editing capability
Workshops Critical to Review Options and Plan Implementation

1st Workshop October 26-27 in Waterloo Canada; 2nd Workshop proposed spring 2016 (at PGC?)

Requirements Analysis
 • Review initial requirements feedback; finalize questions for upcoming international survey
 • Great opportunity to network with and gather requirements from PDF II participants

Data Inventory
 • Review and finalize inventory of existing Arctic DEM data
 • Consider viability and specifications for a near-term data harmonization project

In-depth Review of Polar Geospatial Center Project Methodology and Deliverable
 • PGC will prepare samples of data over Arctic nations’ suggested AOIs
 • Participants will review samples, consider collaboration opportunities with PGC

Data Delivery
 • Review options for serving data (internet download, web coverage service)

Pan-Arctic DEM Hackathon
 • Participating technical practitioners will test data harmonization and delivery options
2 Possible Scenarios to Consider for Pan-Arctic DEM

Support very near term development of a harmonized Pan-Arctic dataset
 • Harmonize existing best-available Arctic nation data
 • Support resolution(s) (100m, 500m) required by global climate science modeling community
 • Arctic SDI consider appropriate delivery mechanism
 • Replace current 1-km data used by many modelers with improved resolution and data vintage
 • Cost quote to standardize to single resolution product is $90,000 U.S. (or in-kind labor)

Support 18-month PGC effort to generate 2m-8m Pan-Arctic DEM coverage
 • Consider opportunities to support PGC: assess imagery to fill gaps, assess delivered data, provide improved coastline data
 • U.S. Alaska example: U.S. NGA to perform hands-on cartographic enhancements to directly improve the data
U.S. Alaska Example of 2-Path DEM Approach

U.S. 5m radar DEM project for Alaska

- U.S. Geological Survey, State of Alaska, and other federal agencies funding
- Anticipate 3-4 years to complete radar collection of both DSM and DTM 5m elevation products for all of Alaska except for the Aleutians
- Total project cost of $60M US, with $23M remaining, $7.5M avg. annual
- Critical for accurate ‘bare-earth’ topographic and cartographic applications – Baseline DEM

U.S. NGA to support PGC effort by improving auto-generated data

- PGC data fills gaps until radar data collection is complete over main body of Alaska
- PGC DEMs provide strong option for areas that are difficult to access, i.e. Aleutians
- PGC provides rapid and costly repeat coverage where needed
- NGA to filter data, find and fill gaps, flatten water, hydro-enforce with breaklines, and where available use additional ground control points and lidar data to improve accuracy
U.S. Alaska Example of 2-Path DEM Approach

• 60% airborne radar elevation acquisition complete
• Use PGC data for Aleutians
• USGS will assess PGC data over Alaska when delivered
• Plan to complete remaining mainland Alaska with 5m ifsar data
Potential Roles for CAFF and Arctic SDI to Consider

CAFF

• Provide contacts to improve requirements gathering effort
• Consider sponsoring workshops
• Consider providing CAFF server space for data storage, depending on Arctic SDI suggestions and outcomes from the Waterloo workshop

Arctic SDI

• Sponsor workshops and provide science contacts
• Support completion of requirements gathering and data inventory efforts
• Attend workshops and providing data and technical expertise
• Provide storage and data delivery for a potential near-term harmonized data product
• Support PGC effort so final product in 18 months is improved beyond the fully automated version