Enabling Access to Arctic Location Based Information - the Arctic SDI

Jani Kylmäaho
Head of Arctic SDI Geoportal WG
National Land Survey of Finland

Arctic Biodiversity Conference
10th October 2018
Arctic SDI Services and Geoportal Demonstration
Data Resources

• Pan-Arctic Digital Elevation Map
• Marine Data
• Gazetteer Database and Search
• Arctic Reference Basemap
Arctic SDI provides access to authoritative data
You searched for locations with the name "ukus" and found 24 results:

<table>
<thead>
<tr>
<th>PlaceName</th>
<th>Region</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukkusik</td>
<td>Greenland</td>
<td>Island</td>
</tr>
<tr>
<td>Leukus</td>
<td>Finland</td>
<td>Populated places</td>
</tr>
<tr>
<td>Lukus</td>
<td>Finland</td>
<td>Populated places</td>
</tr>
<tr>
<td>Lukus</td>
<td>Finland</td>
<td>Populated places</td>
</tr>
<tr>
<td>Lukus</td>
<td>Sweden</td>
<td>Populated places</td>
</tr>
<tr>
<td>Roukus</td>
<td>Finland</td>
<td>Populated places</td>
</tr>
<tr>
<td>Ukura</td>
<td>Finland</td>
<td>Populated places</td>
</tr>
<tr>
<td>Ukkuseq</td>
<td>Greenland</td>
<td>Coastal and shore features</td>
</tr>
<tr>
<td>Leukus</td>
<td>Finland</td>
<td>Hydrographic features</td>
</tr>
<tr>
<td>Ukkusik</td>
<td>Greenland</td>
<td>Natural terrain areas or regions</td>
</tr>
<tr>
<td>Ukura</td>
<td>Finland</td>
<td>Terrain features</td>
</tr>
</tbody>
</table>
LOCATIONS OF SUB-ARCTIC AND ARCTIC SHIPPING ACCIDENTS AND INCIDENT CAUSES, 1995-2004

ABSTRACT TEXT (DATA)

Locations of sub-Arctic and Arctic shipping accidents and incident causes, 1995-2004 (source: Arctic Marine Shipping Assessment 2009).

Published in the Arctic Biodiversity Assessment (ABA) released in 2014.

METADATA DATE

2017-03-21709:22Z
Create Embedded Map

- **Basic settings**
 - Website address (without http and www prefixes): caff.is
 - Map name (required): Alaska-Yukon Bioclimate data
 - Language: English

- **Map Size**

- **Map Layers**

- **Tools**
 - Scale bar
 - Index map
 - Map layers menu
 - Arctic SDI Background Map
 - Protected Areas
 - AMAP Boundary
 - Caribou herds 2014
 - CAFF C3rd
 - BioClimate Map Alaska-Yukon
 - Pan tool
 - Map tools
 - Zoom bar
 - Coordinate tool
 - Hide user interface (Use RPC interface)
 - Center to location

Embedded Map Tool
2012 Arctic Report Cards describe dramatic changes in the Arctic (December 4, 2012)

December 4, 2013, U.S.A. The Arctic Council, through the Arctic Monitoring and Assessment Programme (AMAP) and the Conservation of Arctic Flora and Fauna's (CAFF) Circumpolar Biodiversity Monitoring Programme (CBMP) has contributed to the Arctic Report Card, an annual report released today by the National Oceanic and Atmospheric Administration (NOAA) that monitors the often-quickly changing conditions in the Arctic.

The peer-reviewed report contains contributions from 141 authors from 15 countries. For this year’s issue CAFF’s CBMP developed and edited the terrestrial and marine ecosystem chapters in cooperation with others, while AMAP organized an independent peer-review process involving international experts.

The Arctic region continued to break records in 2012—among them the loss of summer sea ice, spring snow cover, and melting of the Greenland ice sheet. This was true even though air temperatures in the Arctic were unremarkable relative to the last decade, according to the report.

Major findings include:

- **Snow cover**: A new record low snow extent for the Northern Hemisphere was set in June 2012, and a new record low was reached in May over Eurasia.
- **Sea ice**: Minimum Arctic sea ice extent in September 2012 set a new all-time record low, as measured by satellite since 1979.
- **Greenland ice sheet**: There was a rare, nearly ice sheet-wide melt event on the Greenland ice sheet in July, covering about 97 percent of the ice sheet on a single day.
- **Vegetation**: The tundra is getting greener and there’s more above-ground growth. During the period of 2003-2010, the length of the growing season increased through much of the Arctic.
- **Wildlife and food chain**: In northernmost Europe, the Arctic fox is close to extinction and vulnerable to the encroaching Red fox. Additionally, massive phytoplankton blooms below the summer sea ice suggest estimates of biological production at the bottom of the marine food chain may be ten times too low.
- **Ocean**: Sea surface temperatures in summer continue to be warmer than the long-term average at the growing ice-free margins, while upper ocean temperature and salinity show significant interannual variability with no clear trends.
- **Weather**: Most of the notable weather activity in fall and winter occurred in the sub-Arctic due to a strong positive North Atlantic Oscillation. There were three extreme weather events including an unusual cold spell in late January to early February 2012, across Eurasia, and two record storms characterized by very low central pressures and
Marine Ecosystem Monitoring

Arctic marine environments are experiencing, or expected to experience, many human-induced and natural pressures from:

- Climate change
- Harvest
- Industrial development
- Contaminants
- Introduced alien species
- Tourism
- Disease and parasites
- Scientific research
- Shipping

It is not certain how these pressures - alone and in combination - affect marine species and ecosystems because the Arctic’s complexity and size make it difficult to detect and attribute changes in marine biodiversity. In addition, existing marine monitoring efforts are not connected on a circumpolar scale, which limits the ability to efficiently make effective management decisions.
Embedded Map Example 2
Combining Spatial and Statistical data - beta
In Summary, The Arctic SDI provides:

• Access to Authoritative data across the Arctic
• Capacity building materials on principles of SDIs, how to bring your own data in and leverage from it
• Geoportal with Embedded maps, Time Series visualization and other tools to help you achieve your mission
• Means to combine statistical and spatial data, e.g. SDGs, over the Arctic to demonstrate the changing Arctic